Series NR SB **Rotary Cylinder** NF Rack & Pinion-NRP NR ASL How to order Low speed Cylinder (W8H) (S) NRP 90 B 50 CHANGE OF ROD END SHAPE 8 6 ۲ 1 2 3 4 5 7 TPC-1000 TPC-1200 I Rotary Cyl. 4 Bore Size 6 Cushion 50, 63, 80, 100 N: NEW Blank : None R: Rotary Cyl. С : Air cushion SAH 5 Rotation Angle P: Rack Pinion 7 Auto Switch 90° 90° 2 Mounting Blank : None Standard NBU LONG DURABILITY IS 180° 180 B : Basic type W8H Reed switch L : Foot type 100° 100° W8V : Reed switch Sub standard **GUARANTEED BY THE** W9H : Solid state switch 190 190 ACU : Solid state switch W9V INSTALLATION OF WEAR RING 3 Axis * For non indicated angle Standard please contact us. AND USE OF LOW FRICTION 8 Number of Auto Switches SE S : Single axis Blank : 2 pcs PACKING. W: Double axes S :1 pc N :N pcs SHOCK ABSORBER CAN BE ARM INSTALLED(LOW NOISE). EASY TO ADJUST ANGLE BY Specifications STOPPER. **NRP 50** NRP 63 **NRP 80** NRP 100 Models COMPACT DESIGN. Bore Size(mm) 50 63 80 100 90 $^{+4}_{0}$, 180 $^{+4}_{0}$ standard Symbol Rotation Angle (°) 100 $^{+4}_{0}$, 190 $^{+4}_{0}$ substandard standard × Air Cushion option Theoretic Torque(kgf · cm) 98 187 377 785 (based on 5 kgf/cm²) Allowed Energy without air cushion 0.475 1,52 5,225 1.14 (kgf · cm) with air cushion 8.8 13.2 17.6 26.4 Port Size Rc(PT)1/8 Rc(PT)1/8 Rc(PT)1/4 Rc(PT)3/8 Weight of Main 90° 1.6 26 45 82

180°

based on 90°

Body(kgf)

Rotation Time(sec)

Maximum Radial Load (kgf)

Maximum Thrust Load (kgf)

Fluid

Pressure(kgf/cm²)

Temperature · ℃(°F) Action

Tolerance of rotation angle

Auto switch type

1.8

20

50

 $0.2 \sim 2$

3,1

30

60

 $0.2 \sim 3$

Air(Non–lube)

1.5~10.2 0 ~ 60°C(0~140°F)

Double operating

 $0 \sim +4^{\circ}$ W8H,W8V

W9H, W9V

5.0

40

90

 $0.2 \sim 4$

551 www.TPCpage.com www.TPCpneumatics.com

9.3

60

100

 $0.2 \sim 5$

Construction/Parts List

Parts List						
No.	Description	Material	Note			
0	Body	Aluminum alloy				
2	Cover(right)	Aluminum alloy				
3	Cover(left)	Aluminum alloy				
•	Piston	Stainless steel				
9	Piston(100°, 190°)	Stainless steel	Option			
	Shaft	Aluminum alloy				
0	Shaft(double)	Aluminum alloy	Option			
6	Rack	Carbon steel				
0	Bearing retainer	Aluminum alloy				
8	Slider	Resin				
9	Tube gasket	Rubber				
0	Connecring screw	Carbon steel				
0	Bearing	Bearing steel				
12	Parallel key	Carbon steel				
6	Piston packing	Rubber				
14	Spring pin	Steel wire				
6	Plush bolt	Carbon steel				
6	Bolt-hex socket	Steel wire				
Ø	Spring washer	Steel wire				
8	Cushion valve o-ring	Rubber				
(9	Cushion valve	Rolled steel				
20	Cushion packing	Rubber				
2)	Magnet	Magnet type				

Đ

한국원색인쇄사 C 📶 🍸 🔣

Series NR

Ŧ

Ø 80			(mm)
	Potation angle	۵۵°	180°
2-Air cushion		274	318
	B	316	360
		010	
B			
22.5	Ø35(h9)	1	
	0	ى ب	T
22 22	<u>6 -0.030</u>	30	•
15 ¹	*	142	
2-Rc(PT)1/4			
	•		<u>4</u>
۵	□ 70	_	
	93		
<i>d</i> 100			
Ø 100			(mm)
Ø 100			(mm)
Ø 100 2×2-c5- 	Rotation angle	90°	(mm) 180°
Ø 100	Rotation angle	90° 347	(mm) 180° 413
Ø 100	Rotation angle A B	90° 347 389	(mm) 180° 413 455
Ø 100	Rotation angle A B	90° 347 389	(mm) 180° 413 455
Ø 100	Rotation angle A B	90° 347 389	(mm) 180° 413 455
Ø 100	Rotation angle A B	90° 347 389	(mm) 180° 413 455
Ø 100	Rotation angle A B	90° 347 389	(mm) 180° 413 455
Ø 100	Rotation angle A B	90° 347 389	(mm) 180° 413 455
Ø 100	Rotation angle A B	90° 347 389	(mm) 180° 413 455
Ø 100	Rotation angle A B	90° 347 389	(mm) 180° 413 455
Ø 100	Rotation angle A B	90° 347 389	(mm) 180° 413 455
Ø 100	Rotation angle A B	90° 347 389	(mm) 180° 413 455
Ø 100 2×2-C5	Ø39(h9) Ø25(g6) 8	90° 347 389 5 6 5	(mm) 180° 413 455
Ø 100 2×2-C5 4-013 2-Air cushion 4 0 1 1 1 1 1 1 1 1 1 1 1 1 1	Ø 39(h9) Ø 25(g6) 8	90° 347 389 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	(mm) 180° 413 455
Ø 100 $2 \times 2 - C5$ $4 - 013$ $2 - Air cushion$ 1 + 013 $2 - Air cushion1 + 013$ $2 - Air cushio$	Ø 39(h9) Ø 25(g6) 8 - 0.030	90° 347 389	(mm) 180° 413 455
Ø 100 2×2-C5 	Ø39(h9) Ø25(g6) 8 - 0.030	90° 347 389 5 5 6 5 6 5	(mm) 180° 413 455
Ø 100	Ø39(h9) Ø25(g6) 8-0.030	90° 347 389 389	(mm) 180° 413 455
Ø 100	Ø 39(h9) Ø 25(g6) 8 - 0.000	90° 347 389 •••• ••• ••• ••• ••• ••• •••	(mm) 180° 413 455
Ø 100	Ø 39(h9) Ø 25(g6) 8 - 0.030	90° 347 389 47 6 6 6 6 7 7 8 9 9 9 9 9 9 9 9 9 9 9 9 9	(mm) 180° 413 455

 \oplus

E

-(

NR Series

Rotary Cylinder Rack & Pinion Compact type-NRC

- · RACK & PINION type
- Backlashis minimized to determine
 the position, in high precision by using

double rack

- Possible to cantrol angle as well as cushion stroke
- Auto switch attachable for detecting opening and closing

Spec

Model	s	NRC12	NRC15	NRC20	NRC30	NRC40					
Bore size	(mm)	10	13	18	20	25					
Rotation Angle	90°			90±5°							
and Regulaying	180°			180±5°							
Range (*)	360°			360±5°							
Cushion	W/ Adjusting bolt			Urethane							
Cushion	W/ Air cushion			Air							
Theortic Torqu (Based on	e (kgf.cm) P=0.5MPa)	3.53	7.96	20.35	28.26	61.33					
Allowed Energy	W/ Adjusting bolt	0.07	0.12	0.24	0.46	0.78					
(kgf.cm)	W/ Air cushion	_	_	1.15	2.4	3.8					
Air supply p	ort size	N	15		Rc(PT)1/8						
	90°	116	216	610	944	1320					
Weight (g)	180°	140	268	722	1048	1620					
	360°	188	360	1000	1440	2240					
Maximun Radial L	oad (kgf)	1.5	2	5	8	10					
Maximun Thrust L	_oad (kgf)	1.6	2	5	10	11					
Roation Tim	e (sec)	0.2 ~	- 0.7		0.2 ~ 1.0						
Fluid		Air									
Pressure	(MPa)	0.15 ~ 0.71 (21~101psi)									
Lubricatio	on			Unnecessary							
Temperature	e (°C)			0~60 (0 -	~140 °F)						
Action				Duble action	9						
Auto owitch	a turno		W	3H, W9H, W2	ОН						
Auto SWITC	туре			W8V, W9V		W8V, W9V					

Symbol

Construction/Parts List

Ра	rts List		
No.	Description	Material	Note
0	Body-rotary	Aluminum alloy	
2	Cover-end	Aluminum alloy	
8	Cover-port	Aluminum alloy	
4	Cover-shaft	Aluminum alloy	
6	Piston-rack	Stainless steel	
6	Shaft-rotary	Carbon steel	
0	Stopper-adjust	Stainless steel	
8	Seal washer	NBR+carbon steel	
0	Nut-seal	Carbon steel	
0	Cushion	Urethane	
0	Magnet	Magnet type	
12	Wear ring	Resin	
B	Piston packing	NBR	
0	0-ring	NBR	
6	0-ring	NBR	
6	Bearing-ball	Bearing steel	
Ø	Hex socket bolt	Carbon steel	
₿	Bolt-hex socket	Carbon steel	
0	Shock absorber	_	Option

A

Rotary Cylinder							28 28
							NF
Rack & Pinion Table ty	pe-NRI						NR
	• REVOL	/ING ROTARY C`	YLINDER, DO	UBLE PISTON	TYPE(RACK	AND PINION).	ASL
	SHOCKWIRING	ABSORBER CAN	I BE INSTALL SINGLE MET	_ED. HOD BY MIDD)LE EMPTY A)	KIS.	LOW SPEE CYLINDER
	• IT IS PC	SSIBLE TO REG	ULATE ANGL	E AS WELL A	S CUSHION S	STROKE.	CHANGE OF ROD FND SHA
	• AN AUT • SMOOT	O SWITCH CAN	BE ATTACHE ND HIGH PO	UTODETEC WER.	I OPENING A	ND CLOSING.	TPC-100
	• HIGH PI	RECISION.				Symbol	TPC-120
	• A VARIE	ETY OF MOUNTIN	NG OPTIONS		<u> </u>		SAH
					7		NBU
		How to or	rder				ACU
	NRT	30 -	- (W8H)) (S)			SF
	1	23	4	5			
		3 Shock Absorber	bolt	W8V W9H	 Reed switch Solid state switch 	h	ARM
R : Rotary Cyl. T : Table		S Shock Ab	bon	W9V	: Solid state switch	h	
2 Size		4 Auto Switch		5 Nun Blank	nber of Auto Switc k : 2 pcs	hes	
30, 50, 70, 100		W8H : Reed swit	ch	S N	: 1 pc : N pcs		
	Spe	ecification	S				
				NRT 50	NRT 70	NRT 100	
		Models	NRT 30	INITI JU			
		Models Bore Size (mm)	NRT 30 2 × Ø22	$2 \times \emptyset 25$	2 × Ø28	2 × Ø32	
	Ro	Models Bore Size (mm) tation Angle (°)	NRT 30 2 × Ø22	2 × Ø25 0 ~	2 × Ø28 190°	2 × Ø32	
	Cushion	Models Bore Size (mm) tation Angle (°) adjusting bolt attached shock absorber attached	NRT 30 2 × Ø22	2 × Ø25 0 ~ Uret Shock a	2 × Ø28 190° hane absorber	2 × Ø32	
	Cushion Theore	Models Bore Size (mm) tation Angle (°) adjusting bolt attached shock absorber attached etic Torque (kgf · cm)	NRT 30 2 × Ø22 31,3	2 × Ø25 0 ~ Uret Shock a 51.5	2 × Ø28 190° hane absorber 75.4	2 × Ø32	
	Cushion Theore Allowed En	Models Bore Size (mm) tation Angle (°) adjusting bolt attached shock absorber attached etic Torque (kgf · cm) ergy without cushion	NRT 30 2 × Ø22 31,3 0,49	2 × Ø25 0 ~ Uret Shock a 51.5 0.78	2 × Ø28 190° hane absorber 75.4 2.33	2 × Ø32 102.5 3.10	
	Cushion Theor Allowed En (kgf · cm	Models Bore Size (mm) tation Angle (°) adjusting bolt attached shock absorber attached etic Torque (kgf · cm) ergy without cushion shock absorber attached	NRT 30 2 × Ø22 31.3 0.49 1.041	2 × Ø25 0 ~ Uret Shock a 51,5 0,78 2,639	2 × Ø28 190° hane absorber 75,4 2,33 9,68	102,5 3,10 14,08	
	Cushion Theore Allowed En (kgf · cm Air	Models Bore Size (mm) tation Angle (°) adjusting bolt attached shock absorber attached etic Torque (kgf · cm) ergy without cushion shock absorber attached Supply port size	NRT 30 2 × Ø22 31.3 0.49 1.041	2 × Ø25 0 ~ Uret Shock a 51,5 0,78 2,639 PT	2 × Ø28 190° hane absorber 75,4 2,33 9,68 1/8	102,5 3,10 14,08	
	Cushion Theora Allowed En (kgf - cm Air	Models Bore Size (mm) tation Angle (°) adjusting bolt attached shock absorber attached etic Torque (kgf · cm) ergy without cushion shock absorber attached Supply port size Weight (g)	NRT 30 2 × Ø22 31.3 0.49 1.041 1,310	2 × Ø25 0 ~ Uret Shock & 51,5 0,78 2,639 PT 2,030	2 × Ø28 190° hane absorber 75.4 2.33 9.68 1/8 3,110	102.5 3.10 14.08	
	Rc Cushion Theor Allowed En (kgf · cm Air Maxim	Models Bore Size (mm) tation Angle (°) adjusting bolt attached shock absorber attached ettic Torque (kgf · cm) ergy without cushion shock absorber attached Supply port size Weight (g) um Radial Load (kgf)	NRT 30 2 × Ø22 31.3 0.49 1.041 1,310 20 27	2 × Ø25 0 ~ Uret Shock a 51,5 0,78 2,639 PT 2,030 32	2 × Ø28 190° hane absorber 75.4 2.33 9.68 1/8 3,110 34	102.5 3.10 14.08 4,300 40	
	Cushion Theor Allowed En (kgf · cm Air Maxim	Models Bore Size (mm) tation Angle (°) adjusting bolt attached shock absorber attached etic Torque (kgf · cm) ergy without cushion shock absorber attached Supply port size Weight (g) um Radial Load (kgf) adjustion bolt attached	NRT 30 2 × Ø22 31.3 0.49 1.041 1.310 20 37 0.2 ~ 10	2 × Ø25 0 ~ Uret Shock & 51,5 0,78 2,639 PT 2,030 32 46 0,2 ~ 10	2 × Ø28 190° hane absorber 75.4 2.33 9.68 1/8 3,110 34 49 0.2 ~ 15	2 × Ø32 102.5 3.10 14.08 4,300 40 72 0.2 ~ 20	
	Cushion Theore Allowed En (kgf · cm Air Maxim Maxim Rotation Tim (sec) hased of	Models Bore Size (mm) tation Angle (°) adjusting bolt attached shock absorber attached etic Torque (kgf - cm) ergy without cushion shock absorber attached stopply port size Weight (g) um Radial Load (kgf) e adjusting bolt attached stopply port size	NRT 30 2 × Ø22 31.3 0.49 1.041 1,310 20 37 0.2 ~ 1.0 0.2 ~ 0.7	2 × Ø25 0 ~ Uret Shock a 51,5 0,78 2,639 PT 2,030 32 46 0,2 ~ 1,0 0,2 ~ 0,7	2 × Ø28 190° hane absorber 75.4 2.33 9.68 1/8 3,110 34 49 0.2 ~ 1.5 0.2 ~ 10	$ \begin{array}{c} 102.5 \\ 3.10 \\ 14.08 \\ \hline 4.300 \\ 40 \\ 72 \\ 0.2 \sim 2.0 \\ 0.2 \sim 10 \\ \end{array} $	
	Cushion Theore Allowed En (kgf - cm Air Maxim Rotation Tim (sec) based of	Models Bore Size (mm) tation Angle (°) adjusting bolt attached shock absorber attached shock absorber attached etgy without cushion shock absorber attached stock absorber attached stock absorber attached stock absorber attached supply port size Weight (g) um Radial Load (kgf) e adjusting bolt attached n 90°c shock absorber attached Fluid Fluid	NRT 30 2 × Ø22 31.3 0.49 1.041 1,310 20 37 0.2 ~ 1.0 0.2 ~ 0.7	2 × Ø25 0 ~ Uret Shock & 51.5 0.78 2.639 PT 2.030 32 46 0.2 ~ 1.0 0.2 ~ 0.7	2 × Ø28 190° hane absorber 75.4 2.33 9.68 1/8 3,110 34 49 0.2 ~ 1.5 0.2 ~ 1.0 Air	$ \begin{array}{c} 102.5\\ 3.10\\ 14.08\\ 4.300\\ 40\\ 72\\ 0.2 \sim 2.0\\ 0.2 \sim 1.0\\ \end{array} $	
	Cushion Theor Allowed En (kgf · cm Air Maxim Rotation Tim (sec) based o	Models Bore Size (mm) tation Angle (°) adjusting bolt attached shock absorber attached ettic Torque (kgf · cm) ergy without cushion shock absorber attached stopply port size Weight (g) um Radial Load (kgf) um Thrust Load (kgf) e adjusting bolt attached n 90°C shock absorber attached Fluid Pressure	NRT 30 2 × Ø22 31.3 0.49 1.041 1.310 20 37 0.2 ~ 1.0 0.2 ~ 0.7	2 × Ø25 0 ~ Uret Shock & 51,5 0.78 2,639 PT 2,030 32 46 0.2 ~ 1,0 0.2 ~ 0,7 4 0.15~1.0MP	2 × Ø28 190° hane absorber 75.4 2.33 9.68 1/8 3,110 34 49 0.2 ~ 1.5 0.2 ~ 1.0 Air 2a(21~145psi)	102.5 3.10 14.08 4,300 40 72 0.2 ~ 2.0 0.2 ~ 1.0	
	Cushion Theor Allowed En (kgf · cm Air Maxim Rotation Tim (sec) based o Te	Models Bore Size (mm) tation Angle (°) adjusting bolt attached shock absorber attached etic Torque (kgf · cm) argy without cushion shock absorber attached stock absorber attached stock absorber attached Supply port size Weight (g) um Thrust Load (kgf) adjusting bolt attached n 90°C shock absorber attached Fluid Pressure mperature · °C(°F)	NRT 30 2 × Ø22 31.3 0.49 1.041 1,310 20 37 0.2 ~ 1.0 0.2 ~ 0.7	2 × Ø25 0 ~ Uret Shock & 51,5 0,78 2,639 PT 2,030 32 46 0,2 ~ 1,0 0,2 ~ 0,7 46 0,2 ~ 0,7 0,15~1,0MP 0 ~ 60°C	2 × Ø28 190° hane absorber 75.4 2.33 9.68 1/8 3,110 34 49 0.2 ~ 1.5 0.2 ~ 1.0 Air Pa(21~145psi) C(0~140°F)	$ \begin{array}{c} 102.5\\ 3.10\\ 14.08\\ \hline 4.300\\ 40\\ 72\\ 0.2 \sim 2.0\\ 0.2 \sim 1.0\\ \hline \end{array} $	
	Cushion Theor Allowed En (kgf - cm Air Maxim Maxim Rotation Tim (sec) based o Te	Models Bore Size (mm) tation Angle (°) adjusting bolt attached shock absorber attached etic Torque (kgf · cm) ergy without cushion shock absorber attached supply port size Weight (g) um Thrust Load (kgf) adjusting bolt attached Fluid Pressure mperature · °c(°F) Action	NRT 30 2 × Ø22 31.3 0.49 1.041 1,310 20 37 0.2 ~ 1.0 0.2 ~ 0.7	2 × Ø25 0 ~ Uret Shock & 51,5 0,78 2,639 PT 2,030 32 46 0,2 ~ 1,0 0,2 ~ 0,7 46 0,2 ~ 0,7 0,15~1.0MP 0 ~ 60°C Double	2 × Ø28 190° hane absorber 75.4 2.33 9.68 1/8 3,110 34 49 0.2 ~ 1.5 0.2 ~ 1.0 Air ca(21~145psi) c(0~140°F) operating	102.5 3.10 14.08 4,300 40 72 0.2 ~ 2.0 0.2 ~ 1.0	
	Cushion Theore Allowed En (kgf · cm Air Maxim Ratation Tim (sec) based of Te Precision	Models Bore Size (mm) tation Angle (°) adjusting bolt attached shock absorber attached etic Torque (kgf · cm) etic Torque (kgf · cm) shock absorber attached stock absorber attached shock absorber attached shock absorber attached Supply port size Weight (g) um Radial Load (kgf) adjusting bolt attached n 90°C shock absorber attached Fluid Pressure mperature · °C(°F) Action Initial Value	NRT 30 2 × Ø22 31.3 0.49 1.041 1,310 20 37 0.2 ~ 1.0 0.2 ~ 0.7	2 × Ø25 0 ~ Uret Shock a 51.5 0.78 2.639 PT 2.030 32 46 0.2 ~ 1.0 0.2 ~ 0.7 46 0.2 ~ 1.0 0.2 ~ 0.7 0.15~1.0MP 0 ~ 60°C Double	2 × Ø28 190° hane absorber 75.4 2.33 9.68 1/8 3.110 34 49 0.2 ~ 1.5 0.2 ~ 1.0 Air 'a(21~145psi) C(0~140°F) operating 0.05	102.5 3.10 14.08 4,300 40 72 0.2 ~ 2.0 0.2 ~ 1.0	
	Ro Cushion Theor Allowed En (kgf · cm Air Maxim Rotation Tim (sec) based of Te Precision (mm)	Models Bore Size (mm) tation Angle (°) adjusting bolt attached shock absorber attached ettic Torque (kgf · cm) ergy without cushion shock absorber attached stock absorber attached grgy without cushion shock absorber attached Supply port size Weight (g) um Radial Load (kgf) um Thrust Load (kgf) e adjusting bolt attached n 90°C shock absorber attached Fluid Pressure mperature - °C(°F) Action Initial Value After operation in 1 million times	NRT 30 2 × Ø22 31.3 0.49 1.041 1.310 20 37 0.2 ~ 1.0 0.2 ~ 0.7	2 × Ø25 0 ~ Uret Shock a 51.5 0.78 2,639 PT 2,030 32 46 0.2 ~ 1.0 0.2 ~ 0.7 A 0.15~1.0MP 0 ~ 60°C Double ±(±(WRE	2 × Ø28 190° hane absorber 75.4 2.33 9.68 1/8 3,110 34 49 0.2 ~ 1.5 0.2 ~ 1.0 Air a(21~145psi) C(0~140°F) operating 0.05 0.07 4W9V	2 × Ø32 102.5 3.10 14.08 4,300 40 72 0.2 ~ 2.0 0.2 ~ 1.0	
	Re Cushion Theor Allowed En (kgf · cm Air Maxim Rotation Tim (sec) based of Te Precision (mm)	Models Bore Size (mm) tation Angle (°) adjusting bolt attached shock absorber attached ettic Torque (kgf · cm) ergy without cushion shock absorber attached stop y port size Weight (g) um Radial Load (kgf) um Thrust Load (kgf) e adjusting bolt attached Fluid Pressure mperature - °C(°F) Action Initial Value After operation in 1 million times uto switch type	NRT 30 2 × Ø22 31.3 0.49 1.041 1.310 20 37 0.2 ~ 1.0 0.2 ~ 0.7	2 × Ø25 0 ~ Uret Shock a 51.5 0.78 2,639 PT 2,030 32 46 0.2 ~ 1.0 0.2 ~ 0.7 A 0.15~1.0MP 0 ~ 60°C Double ±(W8H W8H	2 × Ø28 190° hane absorber 75.4 2.33 9.68 1/8 3,110 34 49 0.2 ~ 1.5 0.2 ~ 1.0 Air a(21~145psi) C(0~140°F) operating 0.05 0.07 1,W9V W0V	2 × Ø32 102.5 3.10 14.08 4,300 40 72 0.2 ~ 2.0 0.2 ~ 1.0	

 \oplus

Đ

Structure/Parts List

Parts list

No.	Description	Material	Note
0	Body	Aluminum alloy	
2	Port cover	Aluminum alloy	
4	Gasket	NBR	
6	End cover	Aluminum alloy	
6	Piston	Stainless steel	
0	Pinion	Carbon steel	
8	Flange nut	Carbon steel	
9	Adjust bolt	Carbon steel	
0	Cushion pad	Urethane	
12	Table	Aluminum alloy	
ß	Bearing retainer	Aluminum alloy	
0	Magnet	Magnet type	
6	Ball bearing	Bearing steel	
6	Ball bearing	Bearing steel	
Ø	Piston packing	NBR	
₿	Port o-ring	NBR	
0	Wearing	Resin	
2	Seal washer	NBRr+carbon steel	
0	Hex socket bolt	Carbon steel	
2	Hex socket bolt	Carbon steel	
Ø	Hex socket bolt	Carbon steel	
0	Steel ball	Carbon steel	
26	Shock absorber	Stainless steel	Option

Đ

 \oplus

Common cautions for rotary cylinder series

Please make sure to read this prior to selecting and using our products and for detailed cautions of each series, see the details of the respective model.

Cautions for design

Warning

- (1) It is needed to fasten firmly so as to prevent the fixing part or joint of rotary cylinder from being loose. Especially, it is preferred that rotary cylinder should be fastened by the surest way in place
- (2) By attaching protective cover, it is possible to prevent any possible injury to the operation.
- (3) It may be necessary to provide decelerating circuit or shock absorber.
- (4) Rotary cylinder may be subject to the risk of malfunction if power changes due to distortion of sliding part of machine

(5) At the time when you design circuit, it is recommended to consider a prepare restart procedure for after an emergency stop.

Cautions for design

Danger

The use of product for the following purpose should be avoided.

- 1. For the use of medical use equipment designed to treat human body.
- 2. For the use of mechanical device or equipment designed to transport or move persons.
- 3. For the use of mechanical device that needs the maximum stability.

Warning

(1) Confirm the specification.

Be sure that the products in this catalog are designed to be used for industrial compressed air system only. When it is used for allowed energy of load, pressure or temperature beyond the range of specification, it may cause damage or malfunction.

(2) Vibration and shock.

The use of rotary cylinder should be avoided to absorb the vibration and shock of mechanical device.

(3) Concerning intermediary stop.

If at the middle of a direction control valve (3-position closed center type), the rotary cylinder piston stops, it cannot be precisely stopped at exact position like oil pressure because of compressed air. Furthermore, since it is impossible to guarantee prevention of air leakage using valve and rotary cylinder, the stopping position may not be maintained for long time, resulting in damage to human body or equipment.

(4) In event that the kinetic energy on the product exceeds tolerance, be sure to install buffer.

Over energy may break product, resulting in damage to human body, instrument or equipment.

Caution

- (1) Confirm all specification.
- Otherwise, durability may decrease and abnormal wearing or damaging of shaft/internal parts may occur.
- (2) Over load external torque exceeding the specified power to the product should be avoided.
- (3) Be sure to always increase the speed gradually by attaching speed controller when the rotary cylinder is running.
- (4) The use of the product in the low speed area beyond the speed controlling range indicated in the product should be avoided.

Stick slip or stopping of operation may occur due to using low speeds.

(5) Sufficient tolerance is needed in torque

Be sure to select a model so that the required torque is less than 70% of theoretic torque (less than 50% in the case of variable load). If mass of load is large, andoperating speed is fast, the inertia load gets too large exceeding the allowed energy of rotary cylinder, so that the product may be broken resulting in fatal injury to the operation or damage to instruments or equipment. In this case, it is preferred to install shock absorber so as to prevent the inertia power from being directly applied to rotary cylinder.

(6) The use of the product using oil pressure (except NRP for low oil pressure) should be avoided.

The product can be seriously damaged if it is used with the oil pressure.

Cautions for selection

Danger

 Be sure to always check whether it is fixed in safety when attaching the product.

Dropping the product or irregular operation may result in injury.

SB NF NR ASL ASL CYLINDER CYLI

ARM

- (2) Water must be kept away from the product.
- Sprinkling water to the product, washing it with water or using it in the water should be avoided, otherwise it may cause malfunction, resulting in injury, electric shock, fire, etc.
- (3) Touching it should be avoided while the product is running.

Warning

- (1) Space for maintenance and repair should be provided.
- (2) Careful handling is needed with respect to cords such as lead wire of auto switch so as to prevent any possible damage.
- (3) Putting auto switch in the external magnetic field is avoided while rotary cylinder is running.
- (4) Installation of safety valve

So as to prevent the pressure from exceeding regular pressure, be sure to install safety valve when it is increasing because of external power applied to rotary cylinder. Over pressure may break the product.

- (5) Modifying the product should be avoided.
- (6) Fastening screw and observance of fastening torque are needed.
- Fasten screw to the recommended torque while installing.
- (7) Be sure to check that the revolving direction of rotary cylinder coincides with that of the load.
- If the center of revolution does not coincide or moment weight is applied to the point of shaft, it is needed to put flexible coupling so that only the revolving power may be transmitted.

So as to achieve a running condition, be sure to let the load apply directly to shaft as described in the following diagram.

Cautions

 Applying load exceeding twisting or bending strength to the rotary cylinder shaft should be avoided.

Cautions for piping

Cautions

(1) Action prior to piping.

Make sure to clean piping in order to eliminate the chip, oil or dust in a pipe.

(2) Method of using seal pipe

In event that connecting piping or fitting is performed, it is needed to make sure to prevent the chip or sealing material of piping screw from entering into the inside of piping. Especially, wind it, leaving 1.5-2 threads of pipe untapped when using seal tape.

Cautions for adjusting the cushion

Cautions

(1) It is needed to adjust cushion valve again.

- At the time of delivery, though cushion is adjusted, readjusting cushion valve installed on the cover based on the load and running speed used is needed. In the event that cushion valve is turned clockwise, the orifice hole becomes smaller and cushion becomes stronger. After adjusting, it is needed to fasten lock nut (if any) firmly.
- (2) Using cushion valve should be avoided while it is completed closed.

Cautions for lubrication

Cautions

(1) No use of Lubrication

Be sure to use this product without lubrication. If needed, it may be used with lubrication; in this case stick slip will result. So as to operate all in air hydro type, it is needed to lubricate turbine oil first class(without addition) ISO VG 32.

When other operating oil beyond designated model is used, failure results.

Using machine oil and spindle oil are avoided.

한국원색인쇄사 😋 📶 🍸 🔣

Series NR

Cautions for air source

Cautions

(1) It is needed to attach air filter

The use of the product should be avoided in the place in which there are provided dust, salt, iron, powder, humidity, organic solvent, operating oil of phosphoric acid ester type sulfurous acid gas, chlorine gas, and the acids are contained. With the above conditions, operation delay, sudden deterioration of performance and reduction of durability may occur.

(2) The use of the product should be avoided in the place subjected to erosion.

For the equality of materials of rotary cylinder, it is needed to check each structure diagram.

(3) The use of the auto switch should be avoided in the strong magnetic field.

The use of the auto switch should be avoided in the place where there are provided high current or strong magnetism. Otherwise, it may cause malfunction. In particular, the use of the object which may be magnetized to the arranged bracket should be avoided.

Danger

 Hazardous substances such as flammables must be avoided.

Warning

(1) Do not use the product in the place where dust, salt, iron powder, humidity, organic solvent, operating oil of phosphoric acid ester type sulfurous acid gas, chlorine gas and the acids are contained. This condition may cause suspension of operation, sudden deterioration of performance and reduction of durability.

(2) Do not use the product in the place which is subject to erosion.

For the quality of materials of rotary cylinder, refer to each structure diagram.

(3) Auto switch must not be used in the strong magnetic field.

Do not use auto switch in the place with high current or strong magnetism, otherwise malfunction may occur. Especially, don't use object that can be magnetized to the installed bracket.

Cautions

(1) The use of the auto switch should be avoided together with

this product.

Otherwise, malfunction or undesired operation could result. It is needed to attach air filter to an upper stream provided near valve. It is preferred to set the filtering rate below 5um.

(2) It is needed to install following cooler, air dryer, drain catch etc. for preparation

Malfunction of valve or other air pressure equipment may be damaged due to compressed air with much drain.

(3) It is preferred to set the temperature of fluid and environment within the range of specification.

The circuit moisture could be frozen below 5C, resulting in damage and malfunction in packing. So, it is needed to prepare freezing phenomenon.

Cautions for environment for use

Danger

SAH NBU ACU SE

ARM

SB

NF

NR

ASL

LOW SPEED CYLINDER

CHANGE OF ROD END SHAPE

(1) The use of the product should be avoided in the place in which there are provided dust, salt, iron, powder, humidity, organic solvent, operating oil of phosphoric acid ester type sulfurous acid gas, chlorine gas, and the acids are contained. With the above conditions, operation delay, sudden deterioration of performance and reduction of durability may occur.

(2) The over force should be applied to the auto switch or rotary cylinder.

Cautions for repair

Danger

Person who uses pace maker should be kept away from the product within 1m.

Warning

The repair should be performed in the sequence of the manual. Otherwise, instrument or device may have malfunction or may be damaged.

Cautions

Inspection available on demand.

Even with high durability, air pressure apparatus could have deterioration of function. So as to prevent accident, it is needed to check that the needed function of system is normal with daily check.

How to select models

Caution: Load must not exceed the allowed limit. .

In the case of using rotary cylinder, most factors are studied in the context of inertia load. Erroneous selection for shape and weight of this inertia load, the internal parts may be broken by inertia power of load though the load required torque of rotary cylinder is not so large. For this reason, it is necessary to select right model.

1. Use Condition

Reterring to the above graph of theoretic torque, it torque of 600kgf.cm is necessary with applied pressure of 5kgf/am, the supplying pressure is extended to horizontal axis and torque, to vertical axis respectively to get the intersection. Inner diameter (NRP 100) larger than this intersection is to be selected.

한국원색인쇄사 C 📶 🍸 K

Table 1 classifying system of rotary cylinder series														
Ту	7pe	Model	Cylinder diameter (mm)	Revolving angle (°)	Allowed e (Kgf.c	energy m)	Theoretic energy (Kgf.cm) (based on P=5Kgf/off)	Rotation based on 9	time 0° (sec)	Maximum thrust load(Kgf)	Maximum radial load(Kgf)			
		NRP50	50	90	without air cushion	0.475	103	02~	2	50	20			
	R			180	with air cushion	8.8	100	0.2	2		20			
lick	lick	NPP63	63	90	without air cushion	1.14	187	02~	3	60	30			
	& F		00	180	with air cushion	13.2	107		0	00				
	ini		80	90	without air cushion	1.52	377	02~	1	00	40			
	on .		00	180	with air cushion	17.6	511	0.2	4		40			
	type	NRP100	100	90	without air cushion	5.225	765	02~	5	5 100				
	0			180	with air cushion	26.4	100	0.2 0		100	00			
	Re	NRC12 10	10	90	without cushion	0.07	3.1	adjusting bolt attached	0.2~0.7	1.6	15			
R	lick		10	180	shock absorber attached	0.7		shock absorber attached	0.2~0.5		1.0			
ota	& F	NRC15	13	90	without cushion	0.12	8.0	adjusting bolt attached	0.2~0.7	- 2	2			
ry (ty.			180	shock absorber attached	1.2		shock absorber attached	0.2~0.5		2			
Jyli	pe je		19	90	without cushion	0.24	10.1	adjusting bolt attached	0.2~1.0		5			
nde	Cor	NING20	10	180	shock absorber attached	2.5	13.1	shock absorber attached	0.2~0.7	5	5			
Ξr	npa		20	90	without cushion	0.46	28.3	adjusting bolt attached	0.2~1.0	10	Q			
	Ct	NINCOU	20	180	shock absorber attached	3.8	20.0	shock absorber attached	0.2~0.7	10	0			
		NDT20	2402	100	adjusting bolt attached	0.49	212	adjusting bolt attached	0.2~1.0	27	20			
		INR I JU	23.42.22	190	shock absorber attached	1.041	51.5	shock absorber attached	0.2~0.7	57	20			
	H	NDTEO	22/025	100	adjusting bolt attached	0.78	515	adjusting bolt attached	0.2~1.0	16	22			
	abl	INR I JU	2X (22)	190	shock absorber attached	2.639	01.0	shock absorber attached	0.2~0.7	40	JZ			
	e ty		2400	100	adjusting bolt attached	2.33	75 /	adjusting bolt attached	0.2~1.5	40	24			
	pe	INFLU	27,620	2X 1/2 28 190	shock absorber attached	9.68	/0.4	shock absorber attached	0.2~1.0	49	04			
			24022	100	adjusting bolt attached	3.10	102.5	adjusting bolt attached	0.2~2.0	70	40			
		NRTIUU 2X63	NRT 100	ZX 1/2 3Z	ZX V. 3Z	2X V. 32	190	shock absorber attached	14.08	102.0	shock absorber attached	0.2~1.0	12	40

Figure 1 Formula to calculate inertia movement

Classification of Movement (inertia resistance)

Formula of inertia movement can be described by the following expression.

Depending on the shape of inertia movement object, apply the expressions as described in the following figures.

570

TP

한국원색인쇄사 Ϲ 📶 🍸 K

Series NR

Figure 2 Allowed Axis Load

Model	Series	Туре	Thrust Load (Kgf)	Radial Load (Kgf)	Bending Movement N.m(Kgf.cm)
		NRC12	1.6	1.5	_
	NRC Series	NRC15	2	2	_
π	(double rack)	NRC20	5	5	_
ac		NRC30	10	8	—
$\overline{\mathbf{x}}$		NRP50	50	20	—
Z₽	NRP Series (single rack)	NRP63	60	30	-
o e d		NRP80	90	40	—
- Di		NRP100	100	60	—
lion		NRT30	37	20	5.3 (54)
	NRT Series	NRT50	46	32	9.7 (99)
	(double rack)	NRT70	49	34	12.0 (122)
		NRT100	72	40	18.0 (184)

Thrust Load (NRT)

Radial Load (NRT)

Bending Movement Load (NRT)

572

¢

한국원색인쇄사 C 📶 🍸 🔣

Series NR

How to mount rotary cylinder

How to mount NRT series

Model	Bolt	Maximum fastening torque M(Kgf*cm)	Maximum tightening depth L
NRT30	M6 × 1	7.4 (73)	10
NRT50	M8 × 1.25	17 <u>.</u> 3(170)	12
NRT70	M8 × 1.25	17 <u>.</u> 3(170)	12 <u>.</u> 5
NRT100	M10 × 1.5	35.7 (350)	14.5

There are 2 attaching methods for rotary cylinder NRT series as described in the following figures. The tightening torque must comply with the following table.

Model	Fastening method	Bolt	Maximum fastening torque N*m (Kgf*cm)
NRT30	through hole	M8 × 1.25	17.3(170)
NR130	female screw	M10 $ imes$ 1.5	35.7 (350)
NRT50	through hole	M10 \times 1.5	35.7 (350)
NICIGO	female screw	M12 \times 1.75	61.2 (600)
	through hole	M10 \times 1.5	35.7 (350)
	female screw	M12 \times 1.75	61.2 (600)
NRT100	through hole	M10 \times 1.5	35.7 (350)
	female screw	M12 \times 1.75	61.2 (600)

NRP Series

NRP30

NRP80

3.0 4.0 5.0 6.0 7.0 8.0 9.0 10.0

Applied pressure (kgf/cm²)

800

700

600 kgf.cm

500 400

300

200

100

0

1.0 2.0

Torque

---- (theoretic torque)

(effective torque

NRP100

NRC Series

576

(TPO)

Figure 4

1. Shock absorber stroke and distance

R : distance from the revolving central line to the shock center at vertical hem

Example (on the basis of NRT type)

In a case where a plate is attached to the revolving axis and assembled to the terminal plate in regular square type :

- 1. Applying Condition
 - ① revolving angle : 90°
 - 2 rotation time : 0.5 second
 - ③ applied pressure: 0.5 (Mpa)
 - (1) shape: Refer to the above figure, Quality of the material of plate : aluminum alloy (specific gravity=2.68 × 103 Kg/ m³)
 - Quality of the material of regular square : steel for structure (specific gravity=7.85 \times 103 Kg/ m²)
 - ⑤ attaching direction : horizontal

2. Checking Rotation Time

Rotation time is 0.5 second.(on the basis of 90 °) Thus, as rotation time is between 0.2 \sim 1.0 second, it can be used without problem.

Туре		Model	R (m)	Shock absorber stroke(m)	Shock absorber spec
	rack &	NRC12	0.01	0.005	$M8 \times 0.75$
R	pinion compad type	NRC15	0.014	0.005	$M8 \times 0.75$
ota		NRC20	0.016	0.006	M10 \times 1.0
~		NRC30	0.0195	0.006	M12 \times 1.0
\leq	<u></u>	NRT30	0.014	0.006	M12 \times 1.0
ind	ble	NRT50	0.019	0.01	M14 \times 1.5
er	t≮p	NRT70	0.021	0.015	M20 \times 1.5
	м	NRT100	0.025	0.015	M20 \times 1.5

3. Selecting Torque

Calculating inertia moment :

$\begin{array}{l} \hline \textbf{Weight of plate} \\ \hline \textbf{m}_1 = L2 \times (\ L1-R1) \times L3 \times 2.68 \times 10^3 \\ = 0.05 \times (0.12-0.025) \times 0.01 \times 2.68 \times 10^3 = 0.127 \ (kgf) \\ \hline \textbf{m}_2 = L2 \times \ R1 \times L3 \times 2.68 \times 10^3 \\ = 0.05 \times 0.025 \times 0.01 \times 2.68 \times 10^3 = 0.034 \ (kgf) \\ \hline \textbf{h} = 0.127/12\{4 \times (0.12-0.025)^2 + 0.05^2\} + 0.034/12\{4 \times 0.025^2 + 0.05^2\} \\ = 0.42 \times 10^{-3} \ (kg.m^2) - \hline \textbf{m}_1 \end{array}$

Weight of regular square

 $m_{3} = La \times Lb \times Lc \times 2.68 \times 10^{3}$ = 0.05 × 0.05 × 0.05 × 2.68 × 10³ = 0.335 (kgf)

 I_2 = (0.335 \times 0.05 2)/12 + (0.335 \times 0.07 2)

= 1.71×10^{-3} (kg. m²) — 2 Get the actual inertia moment I.

 $|=|_1 + |_2$

- $= 0.42 \times 10^{-3} + 1.71 \times 10^{-3}$
- $= 2.13 \times 10^{-3} (\text{kg. m}^2)$

According to the condition, θ =90 °, t=0.5 second Thus, each acceleration wa is calculated by the following expression.

 $\omega_{A} = (2 \times 1.57) / 0.5^{2} = 12.56 \text{ (rad/s}^{2}) - 4$

Substituting expression (3,(4) limit coefficient: over 5 times is applied to accelerating torque,

Accelerating torque TA = I $\times \omega_{\mathbb{A}} \times \text{K} = 5.43 \times 10^{-3} \times 12.56$ (rad/s²) $\times 5 = 0.134$ (N.m) ----(5)

Referring to the table of theoretic torque

If torque of 0.134 N.m (1.37 Kgf,cm) is necessary when applied pressure is 0.5 MPa (5 Kg/on²), the supplying pressure is extended to horizontal axis and torque, to vertical axis respectively to get the intersection. Inner diameter larger than this intersection is to be selected.

한국원색인쇄사 🗲 M 🍸 K

** Rotary cylinder: For NRT30, theoretic torque is T=31.3 Kgf.cm Effective torque: to be calculated within 70 % of the theoretic torque. $T \Rightarrow 21.9$ Kgf.cm

4. Inspecting kinetic energy

In case that allowed energy is exceeded, use buffer such as shock absorber, etc.

When shock absorber is installed

 $\begin{array}{l} \text{m1} = (2.13 \times 10 - 3) / 0.0142 = 10.87 (\text{Kgf}) & \hline & & \\ \text{m2} = (2 \times 0.134 \times 0.006) / (0.0143 \times 6.282) \\ = 14.86 (\text{Kgf}) & \hline & & \\ \end{array}$

From expressions (3), (4)

v = 0.014 × 6.28 = 0.088 ------6

From expressions (5), (6) If the expression of kinetic energy is substituted from the expressions (5),(6) E = (25.73 \times 0.0882)/ 2 = 0.0996 (J)

Air consumption of rotary cylinder

As 0.0996 < 0.106 (1.041 Kgf.cm), it can be used with no problem in installing shock absorber.

5. Inspecting load rate

Thrust load

Total weight : 0,127 + 0,034 + 0,335 = 0.496 (KG) Thus, WT = 0.496 × 9.8 = 4.86 (N) ------(1) Radial load As there is no applied load WR = 0 (N) ------(2) Moment The movement of plate is, M1 = (0,127 + 0,034) × 9.8 × { (0,12/2) - 0,025 } = 0,055 (N,m) ----(3)

The movement of regular square is $M2 = 0.335 \times 9.8 \times 0.07 = 0.23 \text{ (N,m)} -----@$ From the expressions ③, ④ the total moment value is, M = 0.055 + 0.23 = 0.285 (N,m) ------⑤

From expressions (1), (2), and (5) the value of total load rate is,

(WT / WT MAX)+(WS / WS MAX)+(M / M MAX)=4.86/363+ 0/197+0.285/5.3 = 0.0672 < 1.0

If the total of load rate does not exceed 1, it can be used.

6. Selection

NRT 30 can be used, because it is within the requirement of kinetic energy and load rate.

Model		Cylinder diameter	PCD	Cylinder	Internal		Pressure · Kgf/cm²(psi)								
		· cm(in)	· cm(in)	stroke · cm(in)	volume	1	2	3	4	5	6	7	8	9	10
NRC series (double rack)	NRC12-90°	1(0,39)	1.05(0.41)	0.82(0.32)	0.65	0.01(0.14)	0.03(0.42)	0.04(0.57)	0.05(0.71)	0.07(0.99)	0.08(1.13)	0.09(1.28)	-	-	-
	NRC12-180°	1(0.39)	1.05(0.41)	1.65(0.65)	1,29	0.03(0.42)	0.05(0.71)	0.08(1.13)	0.10(1.42)	0.13(1.85)	0.16(2.27)	0.18(2.56)	-	-	-
	NRC15-90°	1.3(0.51)	1.65(0.65)	1.30(0.51)	1,72	0.04(0.57)	0.07(0.99)	0.11(1.56)	0.14(1.99)	0.17(2.41)	0.21(2.98)	0.24(3.41)	-	-	-
	NRC15-180°	1.3(0.51)	1.65(0.65)	2,59(1,02)	3.44	0.07(0.99)	0.14(1.89)	0.21(2.98)	0.28(3.98)	0.35(4.98)	0.41(5.83)	0.48(6.82)	-	-	-
	NRC20-90°	1.8(0.71)	1.55(0.61)	1,22(0,48)	3.09	0.07(0.99)	0.13(1.99)	0.19(2.70)	0.25(3.55)	0.31(4.41)	0.37(5.26)	0.43(6.11)	-	-	-
	NRC20-180°	1.8(0.71)	1.55(0.61)	2,43(0,95)	6,19	0.13(1.85)	0.26(1.85)	0.38(5.40)	0.50(7.11)	0.62(8.81)	0.75(10.66)	0.87(12.37)	-	-	-
	NRC30-90°	2(0.79)	1.75(0.69)	1.37(0.54)	4.31	0.09(1.28)	0.18(3.70)	0.26(3.70)	0.35(4.98)	0.43(6.11)	0.52(7.39)	0.60(8.53)	-	-	-
	NRC30-180°	2(0,79)	1.75(0.69)	2,75(1,08)	8,63	0.19(2.70)	0.36(2.56)	0.53(7.54)	0.70(9.95)	0.87(12.37)	1.04(14.79)	1.21(17.21)	-	-	-
NRP series (single rack)	NRP50-90°	5(1.97)	2,1(0,82)	1.65(0.65)	32,35	0.70(1.95)	1.34(5.12)	1.98(28,16)	2.62(37.26)	3.26(51.5)	3.90(55.4)	4.54(64.5)	5.17(73.5)	5.81(82.6)	6.45(91.7)
	NRP50-100°	5(1,97)	2,1(0,82)	1.83(0.72)	35,95	0.78(11.09)	1.49(19.06)	2,20(31,3)	2,91(141,4)	3.62(92.7)	4.33(61.6)	5.04(71.7)	5,75(81,8)	6.46(91.9)	7.17(102)
	NRP50-180°	5(1,97)	2,1(0,82)	3,30(1,30)	64,70	1.4(20.0)	2.68(21.19)	3,96(56,3)	5.24(74.5)	6.52(92.7)	7,79(110)	9.07(129)	10.35(147)	11.63(165)	12,90(183)
	NRP50-190°	5(1.97)	2,1(0,82)	3.48(1.37)	68,30	1.49(21.2)	2,83(40,2)	4.18(59.4)	5.53(78.6)	6.88(97.8)	8.23(117)	9.58(136)	10.92(155)	12,27(174)	13.62(193)
	NRP63-90°	6.3(2,48)	2.4(0.94)	1.88(0.74)	58,70	1.28(18.2)	2.44(34.7)	3,59(51,0)	4.75(67.5)	5.91(84.0)	7.07(100)	8.23(117)	9,39(133)	10.55(150)	11.71(166)
	NRP63-100°	6.3(2.48)	2.4(0.94)	2.09(0.82)	65,22	1.42(20.2)	2,71(38,5)	3,99(56,7)	5.28(75.1)	6.57(93.4)	7.86(111)	9,14(130)	10.43(148)	11,72(166)	13.01(185)
	NRP63-180°	6.3(2.48)	2.4(0.94)	3.77(1.48)	117.40	2,55(30,2)	4.87(69.2)	7,19(102)	9,51(135)	11,82(168)	14.14(201)	16.46(234)	18,78(267)	21,10(300)	23.41(333)
	NRP63-190°	6.3(2,48)	2.4(0.94)	3.98(1.56)	123.92	2,69(38,2)	5.14(77.5)	7.59(108)	10.03(142)	12,48(177)	14,93(212)	17.37(247)	19,82(282)	22,27(316)	24,71(351)
	NRP80-90°	8(3,15)	3(1,18)	2,36(0,93)	118,32	2,57(36,2)	4.91(69.8)	7.24(103)	9,58(136)	11,92(169)	14.25(202)	16,59(236)	18,92(269)	21,26(302)	23,60(335)
	NRP80-100°	8(3,15)	3(1,18)	2,62(1,03)	131,46	2,86(40.6)	5.45(73.1)	8.05(114)	10.64(151)	13.24(188)	15.84(225)	18,43(262)	21.03(299)	23.62(336)	26.22(373)
	NRP80-180°	8(3,15)	3(1,18)	4.71(1.85)	236,63	5.15(73.2)	9.82(69.8)	14,49(206)	19.16(272)	23.83(339)	28.50(405)	33,18(472)	37,85(538)	42.52(604)	47.19(671)
	NRP80-190°	8(3,15)	3(1,18)	4.97(1.95)	249,78	5.43(77.2)	10.36(77.5)	15,29(217)	20,23(287)	25,16(358)	30.09(428)	35.02(498)	39,95(568)	44.88(638)	49.81(708)
	NRP100-90°	10(3,94)	3,9(1,53)	3,06(1,20)	240.33	5.23(74.3)	9,97(139)	14,72(209)	19.46(276)	24.21(344)	28,95(411)	33.69(479)	38.44(564)	43,18(614)	47.93(681)
	NRP100-100°	10(3,94)	3,9(1,53)	3.40(1.34)	267.03	5.81(82.6)	11.08(147)	16,35(232)	21.62(307)	26,89(382)	32,17(457)	37.44(532)	42,71(607)	47.98(682)	53.25(757)
	NRP100-180°	10(3,94)	3,9(1,53)	6.12(2.41)	480,66	10.45(148)	19.94(142)	29.43(418)	38,92(553)	48.41(688)	57.90(823)	67,39(958)	76,88(1093)	86.37(1228)	95,86(1363)
	NRP100-190°	10(3,94)	3,9(1,53)	6.46(2.54)	507.36	11.03(156)	21.05(157)	31.07(442)	41.08(584)	51,10(727)	61.12(869)	71,13(1011)	81,15(1154)	91,17(1296)	101,18(1439)
	NRT30-190°	2,2(0,86)	1.65(0.65)	2.73(1.07)	20,78	0.90(12.8)	1.72(24.4)	2,54(36,1)	3.36(47.8)	4.19(59.6)	5.01(71.2)	5,83(82,9)	6.65(94.6)	7.47(106)	8,29(118)
NRT series	NRT50-190°	2.5(0.98)	2.1(0.82)	3.48(1.37)	34,15	1.49(21.2)	2.83(40.2)	4.18(59.4)	5.53(78.6)	6.88(97.8)	8.23(117)	9,58(136)	10.92(155)	12,27(174)	13.62(193)
(double rack)	NRT70-190°	2.8(1.10)	2.45(0.96)	4.06(1.60)	49.98	2,17(30,8)	4.15(59)	6.12(87)	8.09(115)	10.07(143)	12.04(171)	14.01(199)	15,99(227)	17,96(259)	19,93(283)
	NRT100-190°	3.2(1.26)	2,55(1,0)	4,23(1,66)	67.94	2,95(41,9)	5.64(80.2)	8.32(118)	11.00(156)	13.69(194)	16.37(233)	19.05(271)	21,73(309)	24.42(347)	27.10(385)

한국원색인쇄사 🗲 M 🍸 K

한국원색인쇄사 🗲 M 🍸 K

Series NR

Rotating direction and angle range

1.1 Rotating direction of NRP series: If pressed at A port, the axis revolves clockwise and if pressed at B port, counterclockwise.

- * 90°, 180° : standard specification, 100°, 190° : substandard specification.
- 1.3 Rotating direction of NRC series : If pressed at A port, the axis revolves clockwise and if pressed at B port, counterclockwise.

1.5 Rotating direction of NRT series : If pressed at A port, the axis revolves clockwise and if pressed at B port, counterclockwise.

* The range of angle adjustment is $\pm 5^{\circ}$.

1.6 Angle range of NRT series

* The maximum rotation range is 190°. Using shock absorber at angle adjusting part, shock absorber attaching type can receive kinetic energy of 2~5 times to that of adjusting bolt attachment.

581 www.TPCpage.com www.TPCpneumatics.com

ARM

SB

NF

NR